Experimental Evidence of Non-Diffusive Thermal Transport in Si and GaAs

نویسندگان

  • Alexei A. Maznev
  • Jeffrey K. Eliason
  • Austin Minnich
  • Kimberlee Collins
  • Gang Chen
  • John Cuffe
  • Timothy Kehoe
  • Clivia M. Sotomayor
  • Keith A. Nelson
  • Jeremy A. Johnson
  • Clivia M. Sotomayor Torres
چکیده

The length-scales at which thermal transport crosses from the diffusive to ballistic regime are of much interest particularly in the design and improvement of nano-structured materials. In this work, we demonstrate that the departure from diffusive transport has been observed in Si and GaAs using an optical transient thermal grating technique where an arbitrary, experimentally set length scale can be imposed on a material. In a transient thermal grating experiment, crossed laser pulses interfere creating a well-defined periodic absorption and temperature profile. A probe beam is diffracted from this transient grating and length-scale dependent thermal transport properties can be determined from the signal decay. As the length scale is decreased to lengths shorter than the mean free paths of heat carrying phonons, quasi-ballistic heat transport effects become apparent allowing us to map out length scales and mean free paths relevant to nondiffusive thermal transport in Si and GaAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies of non - diffusive heat conduction through spatially periodic and time - harmonic thermal ARCHIVES excitations

Studies of non-diffusive heat conduction provide insight into the fundamentals of heat transport in condensed matter. The mean free paths (MFPs) of phonons that are most important for conducting heat are well represented by a material's thermal conductivity accumulation function. Determining thermal conductivity accumulation functions experimentally by studying conduction in non-diffusive regim...

متن کامل

Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices.

We report the first experimental results on the temperature dependent in-plane and cross-plane thermal conductivities of a symmetrically strained Si/Ge superlattice and a Ge quantum-dot superlattice measured by the two-wire 3 omega method. The measured thermal conductivity values are highly anisotropic and are significantly reduced compared to the bulk thermal conductivity of the structures. Th...

متن کامل

Thermal transport in amorphous materials: a review

Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure f...

متن کامل

Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.

We model and compare the thermal conductivity of rough semiconductor nanowires (NWs) of Si, Ge, and GaAs for thermoelectric devices. On the basis of full phonon dispersion relations, the effect of NW surface roughness on thermal conductivity is derived from perturbation theory and appears as an efficient way to scatter phonons in Si, Ge, and GaAs NWs with diameter D < 200 nm. For small diameter...

متن کامل

Current-transport properties of atomic-layer-deposited ultrathin Al2O3 on GaAs

We report detailed current-transport studies of ultrathin Al2O3 dielectrics on GaAs grown by atomic layer deposition (ALD) as a function of film thickness, ambient temperature and electric field. The leakage current in ultrathin Al2O3 on GaAs is comparable to or even lower than that of the state-of-the-art SiO2 on Si, not counting on high dielectric constant for Al2O3. By measuring leakage curr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011